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Main content

The Deep Learning (DL) boom of the last decade has enabled many state-of-the-art results
in farreaching domains such as computer vision, natural language processing, and weather
prediction, just to name a few. It has also galvanized many research communities to tackle
the major hurdles that make the wide adoption of DL models a challenge. In the hardware
space, this is exemplified by the massive memory and compute requirements that state-of-
the-art neural networks demand, with many large language models, for instance, passing the
billion and tens of billions parameter range, necessitating up to hundreds of GB in memory and
storage. The main response has been a reduction in the size of the data formats used in such
contexts, the improvement in terms of resource consumption usually being linearly proportional
with the decrease in format size.

Whereas classic scientific computing applications have relied on IEEE-754 arithmetic with
a combination of 32 and 64-bit formats (i.e., float and double in C/C++ parlance) available on
mainstream CPUs, modern DL accelerators are increasingly moving towards 16-bit (binary16
and bfloat16) and 8-bit number formats (with the OCP and IEEE P3109 standards). While
such smaller formats are better from a speed, efficiency, and memory standpoint, they are
much more prone to computational rounding errors due to their much-reduced precisions when
compared to their 32 and 64-bit big siblings. There have been various different strategies used
to cope with this decrease in precision, but one in particular has shown significant promise for
its effectiveness: stochastic rounding (SR). It consists of rounding a real value x to one of the
two closest representable values in the target format with probabilities that are proportional to
the distances to the other candidate, meaning that x will be rounded with a higher probability
to the representable value that is closest to it. This is in stark contrast with other rounding
modes such as round to nearest (RN), the default rounding mode for floating-point arithmetic.
RN always picks, in a deterministic way, the representable value closest to x. Let us take the
following toy example, with x = 1.68. Keeping just two significant digits in the representable
result, RN will always result in the value RN(x) = 1.7. With SR, SR(x) = 1.7 with probability
0.8, and SR(x) = 1.6 with probability 0.2.
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One can easily show that the expected value of the result of stochastically rounding a value x
is x itself (indeed, in our previous example, the expected value is 0.8×1.7+0.2×1.6 = 1.68), so
the expected error is zero. Hence, SR maintains, in a statistical sense, some of the information
that is discarded by a deterministic rounding scheme (such as those specified in the IEEE-754
standard for floating-point arithmetic). This proves quite beneficial in many situations, in
particular the kind of computations that are common when training DL models.

While hardware support for SR is starting to appear (e.g., Graphcore IPUs and AMDMI300
GPUs), a major hurdle in its wide adoption is that it is not as straightforward to implement as
other directed, rounding modes, incurring an overhead. Recent work has looked at optimizing its
hardware implementation [3] and also at the theoretical consequences of using limited precision
in such implementations when an ideal operator is not feasible.

Our goal with this internship is to expand on this analysis and study the impact of limited-
precision SR during gradient descent-based optimization. Such an analysis of limited-precision
SR in concrete algorithmic situations is important for accurately assessing and validating the
impact SR stands to have in the future of numerical computing, both in the DL setting and at
large.

Objectifs

Concretely, this will entail using the error model introduced in [4] and applying it to the context
of the gradient descent algorithm in a similar way to [6, 5]. Numerical simulations will be carried
out using the mptorch [1] and srfloat [2] libraries developed within the TARAN team, using
example problems from both classical nonlinear optimization and deep learning scenarios. In
the first step, the student will be required to familiarize himself with the basics of floating-point
arithmetic and the convergence of gradient descent-based algorithms. Depending on the student
and her/his progress, she/he will proceed with the analysis proper, which can be carried out
at various levels of granularity, focusing on just specific parts of the overall algorithm: (1) the
parameter update part of the computation and/or (2) the computations involved in determining
the gradient of the function to optimize.
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